Inhibition of tumor growth by endohedral metallofullerenol nanoparticles optimized as reactive oxygen species scavenger.

نویسندگان

  • Jun-Jie Yin
  • Fang Lao
  • Jie Meng
  • Peter P Fu
  • Yuliang Zhao
  • Gengmei Xing
  • Xueyun Gao
  • Baoyun Sun
  • Paul C Wang
  • Chunying Chen
  • Xing-Jie Liang
چکیده

Intraperitoneal injection of [Gd@C82(OH)22]n nanoparticles decreased activities of enzymes associated with the metabolism of reactive oxygen species (ROS) in the tumor-bearing mice. Several physiologically relevant ROS were directly scavenged by nanoparticles, and lipid peroxidation was inhibited in this study. [Gd@C82(OH)22]n nanoparticles significantly reduced the electron spin resonance (ESR) signal of the stable 2,2-diphenyl-1-picryhydrazyl radical measured by ESR spectroscopy. Like-wise, studies using ESR with spin-trapping demonstrated efficient scavenging of superoxide radical anion, hydroxyl radical, and singlet oxygen (1O2) by [Gd@C82(OH)22]n nanoparticles. In vitro studies using liposomes prepared from bovine liver phosphatidylcholine revealed that nanoparticles also had a strong inhibitory effect on lipid peroxidation. Consistent with their ability to scavenge ROS and inhibit lipid peroxidation, we determined that [Gd@C82(OH)22]n nanoparticles also protected cells subjected in vitro to oxidative stress. Studies using human lung adenocarcinoma cells or rat brain capillary endothelial cells demonstrated that [Gd@C82(OH)22]n nanoparticles reduced H2O2-induced ROS formation and mitochondrial damage. [Gd@C82(OH)22]n nanoparticles efficiently inhibited the growth of malignant tumors in vivo. In summary, the results obtained in this study reveal antitumor activities of [Gd@C82(OH)22]n nanoparticles in vitro and in vivo. Because ROS are known to be implicated in the etiology of a wide range of human diseases, including cancer, the present findings demonstrate that the potent inhibition of [Gd@C82(OH)22]n nanoparticles on tumor growth likely relates with typical capacity of scavenging reactive oxygen species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eliminating Active Species by Endohedral Metallofullerenol in vitro and in vivo

We previously demonstrated that gadolinium endohedral metallofullerenol Gd@C82(OH)22 nanoparticles had high inhibitory activity on growth of malignant tumor in vivo by uncertain mechanism(s). The activities of enzymes associated with the metabolism of reactive oxygen species (ROS) were decreased in the tumor-bearing mice by intraperitoneally injection of Gd@C82(OH)22 nanoparticles . In current ...

متن کامل

CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53

Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...

متن کامل

Reactive oxygen species mediate TNF-α-induced inflammatory response in bone marrow mesenchymal cells

Objective(s): It is generally believed that the inflammatory response in bone marrow mesenchymal stem cells (BMSCs) transplantation leads to poor survival and unsatisfactory effects, and is mainly mediated by cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α). In this study, we explored the mechanisms underlying the TNF-α-induced inflammatory ...

متن کامل

Delivery of disulfiram into breast cancer cells using folate-receptor-targeted PLGA-PEG nanoparticles: in vitro and in vivo investigations.

BACKGROUND A folate-receptor-targeted poly (lactide-co-Glycolide) (PLGA)-Polyethylene glycol (PEG) nanoparticle is developed for encapsulation and delivery of disulfiram into breast cancer cells. After a comprehensive characterization of nanoparticles, cell cytotoxicity, apoptosis induction, cellular uptake and intracellular level of reactive oxygen species are analyzed. In vivo acute and chron...

متن کامل

The promotion of human malignant melanoma growth by mesoporous silica nanoparticles through decreased reactive oxygen species.

The concept that mesoporous silica nanoparticles (MSNs) are regarded as ideal novel drug delivery carriers in tumor therapy has been introduced extensively, but the effects of MSNs on tumor growth have received little attention. Here a model of nude mice xenografted with human malignant melanoma cells (A375) was used to investigate the effect of MSNs on tumor growth. Surprisingly, we found that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 74 4  شماره 

صفحات  -

تاریخ انتشار 2008